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Aeroelas t ic  Optimization Approach 

ROTOR 
DYNAMIC 
ANALYSIS 

o Trim 
o Response 
o Stability 

Aeroelastrc  opt imizat ion of a system e s s e n t i a l l y  c o n s i s t s  of t h e  
determination of t h e  optimum values  of design v a r i a b l e s  which minimize 
t h e  o b j e c t i v e  f u n c t i o n  and s a t i s f y  c e r t a i n  a e r o e l a s t i c  and geometric 
c o n s t r a i n t s .  The process  of a e r o e l a s t i c  opt imizat ion a n a l y s i s  is  shown 
i n  Figure 1. To c a r r y  out a e r o e l a s t i c  opt imizat ion e f f e c t i v e l y ,  one 
needs a r e l i a b l e  a n a l y s i s  procedure t o  determine s teady response and 
s t a b i l i t y  of a r o t o r  system i n  forward f l i g h t .  
used i n  t h e  present  s tudy is developed inhouse at  t h e  Universi ty  of 
Maryland and is  based on f i n i t e  elements in space and time [1,2,31. 
a n a l y s i s  c o n s i s t s  of two major phases: v e h i c l e  t r i m  and r o t o r  s teady 
response (coupled t r i m  a n a l y s i s ) ,  and a e r o e l a s t i c  s t a b i l i t y  of t h e  blade.  
For a reduct ion of h e l i c o p t e r  v i b r a t i o n ,  t h e  opt imizat ion process  r e q u i r e s  
t h e  s e n s i t i v i t y  d e r i v a t i v e s  of t h e  o b j e c t i v e  f u n c t i o n  and a e r o e l a s t i c  
s t a b i l i t y  c o n s t r a i n t s .  For t h i s ,  t h e  d e r i v a t i v e s  of s teady response,  
hub loads  and blade s t a b i l i t y  r o o t s  are c a l c u l a t e d  using a d i r e c t  a n a l y t i c a l  
approach. An automated opt imizat ion procedure is developed by coupling 
t h e  r o t o r  dynamic a n a l y s i s ,  design s e n s i t i v i t y  a n a l y s i s  and constrained 
opt imizat ion code CONMIN C41. 

The r o t o r  dynamic a n a l y s i s  

The 

DESIGN 
S EN S IT1 VlTY 
AN A LY S I S 

o Response Derivatives 
o Loads Derivatives 
o Stability Derivatives 

Figure 1 



Coupled Trim Analysis 
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Coupled trim analysis in forward flight consists of calculation 
of vehicle trim (propulsive), blade steady response and hub loads. 
vehicle trim solution determines the control settings and vehicle attitude 
for the prescribed flight condition. 
nonlinear vehicle force and moment equilibrium equations. 
steady response solution involves the determination of time dependent 
blade deflections at different azimuth locations. The blade is assumed 
as an elastic beam undergoing flap bending, lag bending, elastic twist 
and axial deflections, and is discretized into a number of beam elements. 
To reduce computation time, a large number of finite-element equations 
are transformed to a few (typically eight) normal mode equations.- These 
nonlinear periodic equation8 are then solved for rteady response using 
a finite-element method in time formulated from Hamilton’s weak principle. 
The hub loads are obtained using a force summation approach. 
coupled trim analyrir, the vehicle trim and rotor rerponre equations 
are solved iteratively as one coupled solution uring a modified Newton 
method. 
the overall force and moment equations of the vehicle. Figure 2 shows 
the blade steady flap response at tip for an advance ratio of 0.3. 
a completely trimmed condition, there is no unbalanced force or moment 
acting on the hub, and the lag and torsion responses consist primarily 
of l/rev amplitudes, whereas the flap response is dominated by 2/rev 
amplitude. 

The 

It is calculated from the overall 
The blade 

For the 

The converged trim and response solutions satisfy simultaneously 

For 
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Design S e n s i t i v i t y  Analys is  

A d e s i g n  s e n s i t i v i t y  a n a l y s i s  i nvo lves  c a l c u l a t i o n  of s e n s i t i v i t y  
Most d e r i v a t i v e s  of t h e  o b j e c t i v e  f u n c t i o n  and behavior  c o n s t r a i n t s .  

of t h e  o p t i m i z a t i o n  s t u d i e s  u s e  f i n i t e  d i f f e r e n c e  approach t o  c a l c u l a t e  
s e n s i t i v i t y  d e r i v a t i v e s .  
because of heavy computation t ime. 
size i s  no t  easy .  
i n  fo rmula t ion  b u t  reduces  t h e  computation t i m e  s u b s t a n t i a l l y .  
p r e s e n t  s t u d y ,  t h e  d e r i v a t i v e s  of b l a d e  response ,  hub l o a d s  and b l a d e  
s t a b i l i t y  w i t h  r e s p e c t  t o  t h e  des ign  v a r i a b l e s  are c a l c u l a t e d  u s i n g  
a direct a n a l y t i c a l  approach [1,2,5].  
of b l a d e  r e sponse  i n c l u d i n g  hub l o a d s  i s  developed as an i n t e g r a l  p a r t  
of t h e  b a s i c  s t e a d y  response  a n a l y s i s .  
i s  made p o s s i b l e  through t h e  u s e  of t h e  f . i n i t e - e l emen t  method i n  time. 
u re  3 compares t h e  s e n s i t i v i t y  d e r i v a t i v e s  of t h e  4 / r ev  ver t ical  hub s h e a r  
w i t h  r e s p e c t  t o  t h e  des ign  v a r i a b l e s  a t  t h e  mid span l o c a t i o n .  
numer ica l  r e s u l t s  f o r  f i n i t e  d i f f e r e n c e  and d i r e c t  a n a l y t i c a l  approaches 
show q u i t e  i d e n t i c a l  t r e n d s .  

Th i s  approach i s  easy  t o  implement, b u t  c o s t l y  
Also,  t h e  s e l e c t i o n  of p rope r  s t e p  

I n  t h e  
However, a d i r e c t  a n a l y t i c a l  approach is more complicated 

The fo rmula t ion  of t h e  d e r i v a t i v e s  

The implementation of t h i s  scheme 
Fig- 

The 

DERIVATIVE OF VERTICAL HUB SHEAR 
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CPU Time  f o r  Design S e n s i t i v i t y  Analys is  

The s t a b i l i t y  s e n s i t i v i t y  a n a l y s i s  i nvo lves  t h e  c a l c u l a t i o n  of t h e  
d e r i v a t i v e s  of b l a d e  s t a b i l i t y  r o o t s ,  and aga in  c o n s t i t u t e s  an i n t e g r a l  
p a r t  of t h e  b a s i c  s t a b i l i t y  a n a l y s i s .  For t h i s ,  t h e  F loquet  t ' r a n s i t i o n  
m a t r i x  is extended t o  i n c l u d e  t h e  d e r i v a t i v e s  of b l a d e  s t a b i l i t y  r o o t s .  
F igu re  4 shows CPU t i m e  r e q u i r e d  i n  UNISYS-1100/90 f o r  c a l c u l a t i o n  of 
s e n s i t i v i t y  d e r i v a t i v e s  of b l a d e  response ,  o s c i l l a t o r y  hub l o a d s  ( o b j e c t i v e  
f u n c t i o n )  and b l a d e  dampings (behavior  c o n s t r a i n t s )  of t h e  b a s e l i n e  
b l a d e  u s i n g  f i n i t e  d i f f e r e n c e  and d i r e c t  ana ly t ica l  approaches.  
f i v e  d e s i g n  v a r i a b l e s ,  t h e  CPU time used is 110 min f o r  t h e  f i n i t e  d i f f e r e n c e ,  
and 25 min f o r  t h e  d i r e c t  a n a l y t i c a l  approach. 
t h e  CPU time i s  i n c r e a s e d  t o  560 min f o r  t h e  f i n i t e  d i f f e r e n c e ,  wh i l e  
it i s  50 min f o r  t h e  d i r e c t  a n a l y t i c a l  approach. 
v a r i a b l e s  is i n c r e a s e d ,  t h e  d i f f e r e n c e  of t h e  CPU time r e q u i r e d  becomes 
larger.  

For  

For  t h i r t y  d e s i g n  v a r i a b l e s ,  

As t h e  number of des ign  
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Design Variables 

Figure 5 shows the blade and airfoil section. For the analysis, 
the blade is discretized into five beam elements of equal length, and 
the numerals indicate the order of beam elements. Each beam element 
consists of fifteen degrees of freedom, representing flap bending, lag 
bending, elastic twist and axial deflections. 
denotes the elastic axis, and the mo is a baseline blade mass per unit 
length (reference), which has an offset of yo. 
an extra nonstructural mass 
structural design parameters can be chosen from nonstructural mass (mna), 
chordwise offset of nonstructural mass (Yn,) , blade center of gravity 
offset (yo) , and blade flap bending stiffness (EIy) , lag bending stiffness 
(EI,) and torsional stiffness (GJ). 
have spanwise variations. 
beam elements are 

(6 structural parameters) x (5 beam elements) = 30 

In the airfoil, the ‘8.a.’ 

There can be placed 
at a chordwise location of Yna. Therefore, 

These structural parameters can 
Thus, the total design variables for five 

mx +=E?- Yn. 

n 

5 4 5 2 1  

o Nonstructural Mass 

o Chordwise Location of Nonstructural Mass 

o Chordwise Location of Blade CG 

o Blade Flap Bending Stiffness 

o Blade Lag Bending Stiffness 

o Blade Torsional Stiffness 

* Spanwise Variations 

* Total 30 Design Variables 

Figure 5 
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Minimization of 4/Rev Vertical Shear Alone 

Helicopter vibrations are characterized by means of oscillatory 
hub loads including three forces and three moments. 
vibrations, most of the optimization studies minimized 4/rev vertical shear 
alone for a four-bladed rotor, without constraining other components 
of oscillatory hub forces o r  moments. 
iteration history when 4/rev vertical hub shear alone is minimized. 
After 7 iterations, the 4/rev vertical hub shear is reduced by 75%. 
Other 4/rev hub loads are increased instead; an increase by 30% for 
longitudinal and lateral hub shears, 10% for rolling and lateral hub 
moments and 210% for yawing hub moment. 
other components of oscillatory hub loads besides 4/rev vertical hub 
shear,are not involved in the objective function. 
one needs to make a careful choice of the objective function to achieve 
an optimum solution. 

To reduce helicopter 

Figure 6 shows the optimization 

This is due to the fact that 

This shows that 

OPTIMIZATION ITERATION HISTORY 
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Minimization of All Hub Forces and Moments 

The objective function involves all six components of hub forces 
and moments in either the hub-fixed nonrotating frame o r  rotating frame, 
and is defined as a sum of hub force resultant and moment resultant. 
In the present study, hub loads in the nonrotating frame are used. The 
weighting functions are simply chosen as unity. To achieve an optimum 
solution, the best choice of design variables is found in Ref. [SI involving 
nonstructural masses and their locations (chordwise and spanwise), and 
spanwise distribution of blade flap bending, lag bending and torsional 
stiffnesses. In this case, twenty five design variables are involved. 
Figure 7 shows the optimization iteration history of the objective function. 
Each optimization iteration involves updating the search direction from 
the sensitivity analysis, determining the optimum move parameter by 
polynomial approximation in the one dimensional search and checking 
the convergence to terminate the optimization process. 
iteration, the objective function becomes reduced. 
is obtained after 8 iterations, and a 77% reduction of the objective 

After each optimization 
The optimum solution 

I function is achieved. 

OPTIMIZATION ITERATION HISTORY 
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Optimum Hub Loads 

Figure 8 compares optimum 4/rev hub forces and moments with the 
baseline values. 
and moments are reduced from the baseline values. This is because all 
the components are included in the objective function, and also equal 
weighting function is enforced on each component. There are considerable 
reductions of 4/rev hub loads achieved: an 80% reduction for longitudinal 
and lateral hub shears, a 60% reduction for vertical hub shear, an 80% 
reduction for rolling and pitching hub moments and a 90% reduction for 
yawing hub moment. 
function must, therefore, include all six components of 4/rev hub loads 
in conjunction with appropriate weighting functions. 

The optimum result shows that all the 4/rev hub forces 

For  a reduction of helicopter vibration, the objective 
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OBJECTIVE : MINIMIZATION OF ALL HUB FORCES AND MOMENTS 
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Aeroelas t ic  S t a b i l i t y  Cons t ra in ts  

For s t r u c t u r a l  opt imizat ion problems, one may impose behavior c o n s t r a i n t s  
which must be s a t i s f i e d  f o r  a feasible design. 
a n a l y s i s ,  t h e  a e r o e l a s t i c  s t a b i l i t y  of t h e  blade i n  forward f l i g h t  i s  
constrained t o  be s t a b l e  f o r  a l l  modes. For t h i s ,  t h e  blade damping, 
which is t h e  real p a r t  of t h e  characteristic exponent with a negat ive  
s i g n ,  is kept i n  t h e  p o s i t i v e  range. Figure 9 shows t h e  opt imizat ion 
i t e r a t i o n  h i s t o r y  of blade damping of f irst  l a g ,  f l a p  and t o r s i o n  modes. 
For lag  and f l a p  modes, t h e  blade damping v a r i e s  smoothly a t  each i t e r a t i o n .  
However, f o r  t o r s i o n  mode t h e  damping i s  changed abrupt ly  between i t e r a t i o n s  
2 and 4. 
o f f s e t  because of nons t ruc tura l  masses. 
remain s t a b l e  f o r  a l l  i t e r a t i o n s .  Thus, t h e  design s o l u t i o n  i n  t h e  
opt imizat ion process  s t a y s  wi th in  t h e  f e a s i b l e  design space f o r  a l l  
i t e r a t i o n s  (unconstrained opt imizat ion process) . 

I n  t h e  present  optimization 

This  may be assoc ia ted  with a large s h i f t  of e f f e c t i v e  c.g.  
A l l  t h r e e  blade modes, however, 

I I I I 1 1 I 0 

OPTIMIZATION ITERATION HISTORY (-a13 (-alFv - a l T )  

BEHAVIOR CONSTRAINTS : BLADE DAMPINGS 

Figure 9 
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CPU Time f o r  Optimizat ion Analys is  

F i g u r e  10 shows t h e  comparison of CPU time r e q u i r e d  f o r  t h e  op t imiza t ion  
p r o c e s s  on UNISYS 1100/90 us ing  f i n i t e  d i f f e r e n c e  and d i r e c t  a n a l y t i c a l  
approaches.  
based on t h e  number of f u n c t i o n  eva lua t ions .  
s o l u t i o n ,  t h e r e  is about  an 80% r e d u c t i o n  i n  CPU time w i t h  t h e  p r e s e n t  
approach as compared wi th  t h e  f r e q u e n t l y  adopted f i n i t e - d i f f e r e n c e  approach. 
Comparing t h e  CPU time f o r  t h e  s e n s i t i v i t y  a n a l y s i s ,  one can e a s i l y  
realize t h a t  t h i s  s u b s t a n t i a l  r educ t ion  of CPU time r e s u l t s  from an 
eff ic ient  e v a l u a t i o n  of s e n s i t i v i t y  d e r i v a t i v e s  of t h e  o b j e c t i v e  f u n c t i o n  
and/or  c o n s t r a i n t s  i n  t h e  s e n s i t i v i t y  a n a l y s i s  by u s i n g  a d i r e c t  a n a l y t i c a l  
approach. 

For  f i n i t e  d i f f e r e n c e  approach, t h e  CPU t i m e  is approximated 
To achieve  an optimum 
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Behavior C o n s t r a i n t s  -- I n i t i a l l y  I n f e a s i b l e  

If t h e  des ign  s o l u t i o n  s t a y s  i n  t h e  f e a s i b l e  des ign  space  f o r  a l l  
i t e r a t i o n s ,  behavior  ( a e r o e l a s t i c  s t a b i l i t y )  c o n s t r a i n t s  do n o t  become 
a c t i v e  (see F igure  9 ) .  
c o n s t r a i n t s  have been v i o l a t e d ,  r i g h t  from t h e  beginning for t h e  b a s e l i n e  
c o n f i g u r a t i o n .  
b l a d e  damping of f i rs t  lag,  f l a p  and t o r s i o n  modes when 1% margin of 
b l a d e  damping is imposed f o r  s t a b i l i t y .  
b a s e l i n e  c o n f i g u r a t i o n  i s  less t h a n  1%. 
des ign  s o l u t i o n  is moved i n t o  t h e  f e a s i b l e  des ign  space a long  t h e  f e a s i b l e  
d i r e c t i o n  by t h e  op t imize r  CONMIN C41, and t h e  b l a d e  becomes a e r o e l a s t i c a l l y  
s t a b l e .  I n  subsequent i t e r a t i o n s ,  t h e  b l a d e  s t a b i l i t y  is w e l l  maintained.  
S i m i l a r  t o  F igu re  9 ,  t h e  b l ade  damping o f ' l a g  and f l a p  modes v a r i e s  
smoothly a t  each i t e r a t i o n ,  bu t  t h e  t o r s i o n  mode damping i s  changed 
a b r u p t l y  due t o  a large s h i f t  of e f f e c t i v e  c.g., o f f s e t  r e s u l t e d  from 
t h e  n o n s t r u c t u r a l  mass placement.  

Here, w e  have i n v e s t i g a t e d  a case i n  which behavior  

F igu re  11 shows t h e  op t imiza t ion  i t e r a t i o n  h i s t o r y  of 

The lag mode damping f o r  t h e  
I n  t h e  next  i t e r a t i o n ,  t h e  

BEHAVIOR CONSTRAINTS : BLADE DAMPINGS 

** 1% DAMPINGS MAINTAINED FOR STABILITY 

Figure 11 
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Initially Infeasible Design 

Figure 12 shows the optimization iteration history of the objective 
function for the case in which behavior (aeroelastic stability) constraint 
is violated by the baseline configuration. 
minimization of all six components of 4/rev hub loads for a four-bladed 
rotor. 
locations (spanwise and chordwise), and spanwise distribution of blade 
bending stiffnesses (flap, lag and torsion), and there are total twenty 
five design variables. 
move along the feasible direction so that no behavior constraint is 
violated. 
(see Figure 111, and the objective function is slightly increased. 
subsequent iterations, the objective function becomes continually reduced. 
The optimum solution is obtained after six iterations, and there is 
about a 25% reduction of the objective function achieved. Comparing with 
the case of initially feasible design where no stability constraint 
was violated and a reduction of 77% of the objective function was achieved, 
the optimum for initially infeasible design is far less achieved. 

The objective function involves 

The design variables involve nonstructural masses and their 

The optimizer enforces the design solution to 

After first iteration, the design solution becomes feasible 
In 
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